Energy Metabolism in Uncoupling Protein 3 Gene Knockout Mice
نویسندگان
چکیده
منابع مشابه
Energy metabolism in uncoupling protein 3 gene knockout mice.
Uncoupling protein 3 (UCP3) is a member of the mitochondrial anion carrier superfamily. Based upon its high homology with UCP1 and its restricted tissue distribution to skeletal muscle and brown adipose tissue, UCP3 has been suggested to play important roles in regulating energy expenditure, body weight, and thermoregulation. Other postulated roles for UCP3 include regulation of fatty acid meta...
متن کاملAlterations in anxiety-like behavior following knockout of the uncoupling protein 2 (ucp2) gene in mice.
AIMS Uncoupling protein 2 (UCP2) is a mitochondrial protein that reduces oxidative stress and has a protective function in chronic inflammatory diseases such as multiple sclerosis, rheumatoid arthritis and systemic lupus erythematosus. UCP2 is strongly expressed in areas implicated in the central regulation of stress and anxiety. Therefore, we compared the neuroendocrine regulation of stress re...
متن کاملUncoupling protein 3 and fatty acid metabolism.
A role for uncoupling protein (UCP) 3 in fatty acid metabolism is reviewed within the context of our proposal, first put forward in 1998, that this homologue of UCP1 may be involved in the regulation of lipids as fuel substrate rather than in the mediation of thermogenesis. Since then, the demonstrations of muscle-type differences in UCP3 gene regulation in response to dietary manipulations (st...
متن کاملProteomic analysis of parkin knockout mice: alterations in energy metabolism, protein handling and synaptic function.
Parkin knockout (KO) mice show behavioural and biochemical changes that reproduce some of the presymptomatic aspects of Parkinson's disease, in the absence of neuronal degeneration. To provide insight into the pathogenic mechanisms underlying the preclinical stages of parkin-related parkinsonism, we searched for possible changes in the brain proteome of parkin KO mice by means of fluorescence t...
متن کاملExpression of PPARα modifies fatty acid effects on insulin secretion in uncoupling protein-2 knockout mice
AIMS/HYPOTHESIS In uncoupling protein-2 (UCP2) knockout (KO) mice, protection of beta cells from fatty acid exposure is dependent upon transcriptional events mediated by peroxisome proliferator-activated receptor-alpha (PPARalpha). METHODS PPARalpha expression was reduced in isolated islets from UCP2KO and wild-type (WT) mice with siRNA for PPARalpha (siPPARalpha) overnight. Some islets were ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biological Chemistry
سال: 2000
ISSN: 0021-9258
DOI: 10.1074/jbc.m910179199